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Optical Materials Characterization

Abstract

Data obtained as part of the Optical Materials Characterization Program are summarized
in this report. Room temperature values of refractive index as a function of wavelength are
presented for the following materials: commercially grown KCl, reactive atmosphere processed
(RAP) KCl, KCl nominally doped with 1.5% KI, hot forged CaF,, fusion cast CaF,_, CaF_, doped
with Er (0.001% to 3% Er), SrF_, chemical vapor deposited (8VD) ZnSe (2 specimens), and ZnS
(CVD, 2 specimens). Data for the thermo-optic constant (dn/dT) and the linear thermal
expansion coefficient are given for the following materials over the temperature range -180 °C
to 200 °C: Al 03, BaF_, CaF_., CdF., KBr, KCl, LiF, MgF_, NaCl, NaF, Ser, ZnS (CVD), and
ZnSe (CVD). Tﬁe piezo=optic®consténts of the following materials are présented: As S3 glass,
CaF_, BaF,, Ge, KC1l, fused Sioz, SrF_, a chalcogenide glass (Ge 33%, As 12%, Se 55%) "and

ZnSe (CVD).

2

Key words: A1203; As283 glass; Ban; CaFZ; ch2; chalcogenide glass; elastic compliances;

elastic constants; elasto-optic constants; fused silica; Ge; hot forged; KBr;
KC1; KC1:KI; LiF; MgF_; NaCl; NaF; piezo-optic constants; refractive index; SiOz;
SrFZ; thermal expansidon coefficient; thermo-optic constant; 2ZnS; ZnSe
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Optical Materials Characterization
1. Technical Report Summary

1.1 Technical Problem

Windows subjected to high-average-power laser radiation will undergo optical and mechan-
ical distortion due to absorptive heating. Tf the distortion becomes sufficiently severe,
the windows become unusable. Theoretical calculations of optical distortion in laser windows
depend on the following material parameters; absorption coefficient, refractive index, the
thermo-optic constant (change of index with temperature), linear thermal expansion coefficient,
stress-optical constants, elastic compliances, specific heat, thermal conductivity and
density. Our program has been established to measure refractive indices, thermo-optic
constants, piezo-optic constants, elastic compliances, and linear thermal expansion coefficients
of candidate laser window materials.

1.2 General Methodology

Laboratory experiments are conducted for measuring refractive indices, thermo-optic
constants, piezo-optic constants, elastic compliances and linear thermal expansion coefficients.

The refractive indices of prismatic specimens are measured on precision spectrometers by
the method of minimum deviation. Two spectrometers are used. One instrument, which uses
glass optics, is used for measuring refractive indices in the visible with an accuracy of
several parts in 10 . The other instrument, which uses mirror optics, is used for measuring
refractive indices in the ultraviolet and the infrared to an accuracy of several parts in 107,
Using both spectrometers we can measure refractive indices over the spectral region 0.2 um
to 50 um.

We measure the linear thermal expansion coefficient, a, by the method of Fizeau
interferometry., The interferometer consists of a specially prepared specimen which separates
two flat plates. Interference fringes are observed due to reflections of HeNe laser radia-
tion at 0.6328 um from the plate surfaces in contact with the specimen. We obtain o by
measuring the shift of these interference fringes as a function of temperature. We can
measure o from -180 °C to 800 °cC.

The thermo-optic constant, dn/dT, is measured by two methods. In the first method, we
measure the refractive index with the precision spectrometers at two temperatures, 20 °C
and 30 °C, by varying the temperature of the laboratory. This provides us with a measure
of dn/dT near room temperature. In the second method, which may be used for measuring dn/dT
from -180 °C to 800 °C, we obtain dn/dT from a knowledge of the expansion coefficient and by
measuring the shift of Fizeau fringes in a heated specimen as a function of temperature.
The Fizeau fringes are due to interferences between reflections from the front and back
surfaces of the specimens. Measurements are made with discrete spectral sources, such as
lasers or spectral lamps, in the infrared, the visible, and the ultraviolet.

We measure piezo-optic constants and elastic compliances using a combination of
Twyman-Green and Fizeau interferometers. The coefficients for piezo-birefringence are
measured by polarimetric techniques. From the shift of fringes in specimens subjected to
uniaxial or hydrostatic compression, we obtain the data necessary for determining all the
piezo-optic constants and elastic compliances. The measurement are made with discrete
spectral sources.

In materials with small piezo-optic constants or in materials that cannot withstand
large stresses, we use interferometers designed to measure fractional fringe shifts. At
10.6 pm a modified Twyman-Green interferometer, which has a sensitivity of 0.01 A, is used.
At 632.8 nm, a modified Dyson interferometer, which has a sensitivity of 0.002 A, is used.
When using these interferometers to measure piezo-optic constants we must know the elastic
constants of the material under test.




1.3 Technical Results

The purpose of this report is to collect in one publication all the data obtained under
the Optical Materials Characterization Program. In addition to data found in our previous
reports, we present data not yet reported. The data are tabulated in Section 2.9.

Section 2.1 discusses the measurement of refractive index by the method of minimum
deviation. Tables of room temperature values of refractive index are presented as a function
of wavelength. Also given are the parameters for a three term Sellmeier equation for
refractive index. Data are given for the following materials: commercially grown KC1;
reactive atmosphere processed (RAP) KC1l; KCl nominally doped with 1.5% KI; hot forged CaF2;

fusion cast CaFZ; CaF2 doped with the following percentages of Er: 0.001%, 0.003%, 0.01%,

0.03%, 0.1%, 0.3%, 1% and 3%; chemical vapor deposited (CVD) ZnSe (2 specimens); and CVD
ZnS (2 specimens).

The measurement of linear thermal expansion coefficient is discussed in Section 2.2. A
table of linear thermal expansion coefficients as a function of temperature over the tempera-

ture -180 °C to 200 °C is given for the following materials: A12O3, BaF2, CaF2, Csz, KBr,

KCl, LiF, MgF., NaCl, NaF, SrF_, zZnS (CVD), and ZnSe (CVD). The data are a synthesis of
values from tﬁe literature and“values obtained under this program. Our data are presented
when disagreement with the literature was found. Graphs are shown to demonstrate the dis-
crepancies.

The measurement of thermo-optic constants is discussed in Section 2.3. Tables of
thermo-optic constants as a function of temperature over the temperature range -180 °C to
200 °C are presented. In the following table, the materials and wavelengths for which data
are presented are denoted by x's:

Material/Wavelength 0.458 um 0.6328 um 1.15 um 3.39 um 10.6 um
A1203 X - ;— - -
BaF2 X X X X X
CaF2 X X X X -
CdF2 X X x X -
KBr (RAP) X X X b4 b4
KC1 (RAP) X X be X X
LiF X ' X X b4 -
MgF2 be X x X -
NaCl X X X X -
NaF X X X X -
SrF2 » X X b4 X X
ZnS (CVD) - - X x X
ZnSe (CVD) - X X X b




The measurement of piezo-optic constants and elastic compliances is discussed in
Section 2.4. The piezo-optic constants of the following materials are given: As,S
glass, BaF2, CaF2, Ge, KC1l, fused Sioz, Ser, a chalcogenide glass (Ge 33%, As 12%, Se 55%)
and ZnSe (CVD). :

1.4 Department of Defense Implications

The Department of Defense is currently constructing high-power laser systems. Criteria
are needed for determining the suitability of different materials for use as windows in
these systems. The measurements we perform provide data that laser system designers can
use for determining the optical performance of candidate window materials.

1.5 Implications for Further Research

While extensive measurements of refractive properties have been made in the infrared,
there remains a significant lack of data in the ultraviolet. A review of the literature
indicates that piezo-optic data in the ultraviolet are virtually nonexistent and although
some thermo-optic data are available, they are scant. These data would be particularly
important for materials to be used in conjunction with excimer lasers (XeF, KrF, ArF).




2. Technical Report
2.1 Introduction

With the development of new laser systems of ever increasing average-power levels, the
optical elements in these systems, even if they possess extremely small absorption coeffi-
cients, can experience a significant temperature rise. The temperature distribution in the
element will generally be nonuniform; hence, an optical beam propagating through the element
will experience a wavefront distortion due to the thermally induced optic path variation
across the aperture of the element. Theoretical analyses [l-4] have shown that the variation
of optic path will depend on: (1) the change of refractive index with temperature, (2) the
change of element thickness due to thermal expansion, (3) the change of refractive index due
to stresses produced by thermal gradients and, (4) the change of thickness due to these
stresses. 1In order to predict the magnitude of these effects, the optical designer requires
certain material parameters which include absorption coefficient, refractive index n, thermo-
optic constant dn/dT, piezo-optic constants g4, linear thermal expansion coefficient a,
and elastic constants cij or s,.. The purpose of the Optical Materials Characterization

Program at the National Bureau of Standards has been to measure n, dn/dT, g;:, o, and, when
necessary sij of important optical materials of potential application in higg—power laser
systems. Afi-earlier examination of the literature had shown that data on dn/dT and q.. of
important optical materials were almost nonexistent outside the visible region of the
spectrum [5]; hence, our program has emphasized measurements in the infrared at 10.6 um and
3.39 um, wavelengths close to the output of CO2 and DF lasers, respectively.

This report discusses the various techniques we use for measuring n, dn/dT, o, d,., and
s... It then summarizes, principally in tabular form, data we have obtained on a wide

variety of infrared transmitting materials.

2.2 Refractive Index

Several techniques are used for measuring the refractive indices of optical materials;
however, as part of this program, the measurements of n have been conducted on two precision
spectrometers by the method of minimum deviation [6,7]. Schematic diagrams of both spectro-
meters are shown in Figure 1. The first spectrometer, which contains glass optics, is
capable of measuring n in the visible and in the near infrared to an accuracy of several
parts in 10°. The second spectrometer, which contains mirror optics, is capable of measuring
n grom 200 nm in the ultraviolet to 50 um in the infrared to. an accuracy of several parts in
10°. The accuracy depends on specimen quality and size. All values of refractive index
are measured relative to the refractive index of air, n_, that is we measure n/n_. The
value of na is about 1.0003 over the full wavelength range of measurement. a

When determining the refractive index by the minimum deviation technique, collimated
radiation is passed through a specimen which is in the form of a triangular prism. The
prism is rotated about an axis parallel to the prism apex until a position is found where
the angular deviation of the beam at a chosen wavelength is a minimum. In terms of the
minimum deviation angle D, the angle between the emergent beam and an undeviated beam, and
the prism angle A, the refractive index is given by

D+A

n = sin 2 (1)

sin A
2
Measurements are performed at discrete wavelengths which are selected from the emission
spectra of Hg, Cd, He, Cs, and Zn and from calibrated absorption bands of H_O, polystyrene,
methycyclohexane, and 1,2-4 trichlorobenzene. A series of calibrated narrow-band filters
is also used in the infrared region. Each set of experimental data is fitted by a least
squares solution to a three term Sellmeier-type dispersion equation of the form [8]

5 3 a2
n® -1=2% —%——7 (2)
5=1 %Ay

Ut




Figure 1.

(a) Schematic of spectrometer used for visible region
refractometry. (b) Schematic of spectrometer used for non-
visible region refractometry. Symbols: A = source,

B = divided circle, C = prism table, D = collimator,
E = telescope, F = collimating mirror , G = movable mirror,
H = detector,




where A is the wavelength of interest, A. is the wavelength position of an oscillator, and
A, is the oscillator strength. The Aj'sjand Aj's are not intended to have any physical

significance because they can be influenced by the wavelength range of the experiment data.
Primary emphasis is given to procuring a mathematical fit to the measured data useful for
interpolation. Equation (2) is not adequate for fitting data close to an absorption edge.

It is possible to obtain dn/dT by measuring n at two temperatures, usually near 20 °C
and 30 °C (strictly speaking we obtain An/AT). What we actually obtain is d(n/na)/dT where

an _Ta 3)
dT dT

N

o

&)
n
a

T

dn
. - -1 : - . . . .
where aEi»ls about 1.1 x 10 6 K [8]. The particular application of the data will determine
whether the corrections in eq. (3) should be considered. For example, if the optical compo-
nent is always in thermal equilibrium with the surrounding air, the correction is unnecessary.

In Tables la through le (Section 2.9) we tabulate coefficients for computing refractive
index from equation (2) for the following materials: Table la - commercial KC1, RAP KCl, and
KC1:KI (KCl nominally doped with 1.5% KI); Table 1lb - hot forged and fusion cast CaF.; Table
lc - Ser; Table 1d - CVD ZnS (2 specimens), and; Table le - CVD ZnSe (2 specimens).

In Tables 2a through 2f we present tabulations of refractive index at convenient wave-
length intervals for the following materials: Table 2a, 2b, 2c-commercial KCl, RAP KC1l, and
KC1:KI; Table 2d, 2e- hot forged and fusion cast CaF,; Table 2f - SrF_; Table 2g, 2h - CVD
7ZnS (2 specimens); Table 2i, 2j - CVD ZnSe (2 specimens); and Table 2% - CaF_ doped with
the following percentage of Er: 0.001%, 0.003%, 0.01%, 0.03%, 0.1%, 0.3%, 1%, 3%. The values
given apply to the specific specimens measured. Differences in the fourth decimal place may
occur in nominally identical materials, as can be seen, for example, in the data for CVD
ZnS and ZnSe.

2.3 Linear Thermal Expansion Coefficient

Different techniques have been used to measure linear thermal expansion. The most
common technique employs a quartz dilatometer, but this measurement is not of great accuracy.
A second technique involves the measurement as a function of temperature of lattice para-

meters by x-ray techniques [10]. 1In a third technique, o is obtained from a measurement
of the capacitance of a parallel plate capacitor, where the plate spacing is a function of
the specimen thickness [11]. We measure a by an interferometric technique [12]. A

specially prepared specimen is placed between two optic flats as shown in Figure 2. Fizeau
interference figures are observed when monochromatic radiation from a helium-neon laser
(A=0.6328 pm) is reflected from the two surfaces in contact with the specimen. These
fringes are observed to shift as a function of temperature due to the thermal expansion of
the specimen.

Figure 3 shows a schematic diagram of the apparatus used for measuring both o and dn/dT.
This apparatus will operate over the temperature range -18Q °C to 200 °C. The furnace is
constructed from a cylinder of copper 37 mm in diameter by 75 mm high with walls 6 mm thick
to permit rapid transfer of heat. A commercial band heater, which is clamped around the
furnace generates 175 W of heat with an input of 120 VAC.

The furnace rests at the bottom of an evacuable chamber 100 mm in diameter by 150 mm
tall. Protruding from the bottom is a copper rod, 12 mm in diameter by 150 mm long, that
conducts heat away from the furnace to the liquid nitrogen reservoir. Thus, we can sta-
bilize the temperature in the furnace by balancing the heat input from the heater with the
heat leak to the liquid nitrogen.
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Figure 2. Fizeau interferometer for measuring linear thermal expansion.
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The specimen rests within the furnace over a depression that is milled at an angle of
1° with respect to the furnace axis in order to deflect extraneous laser beam reflections
to the side. Holes are drilled at several locations within the furnace to allow placement
of thermocouples in contact with the specimen and to allow the pressure within the furnace
to equalize with the pressure outside the furnace. Two thermocouples measure the tempera-
ture at the top and at the bottom of the specimen. & copper cover with a window allows
access of laser radiation to the specimen in the furnace while maintaining a uniform thermal
environment around the specimen. All windows in the system are tilted at a 1° angle to
eliminate unwanted reflections.

We find that the system operates well when filled with a helium exchange gas of several
millimeters Hg pressure. The helium environment has several advantages over air or vacuum.
During cool-down, products in the air condense on the system optics and hence interfere with
the laser beam. With vacuum, the thermal response of the system is sluggish because of poor
heat transfer between the furnace, the heat leak, and the specimen. 1In addition, there is
a large temperature difference between the two thermocouples., With the helium present, the
maximum temperature differential measured with the two thermocouples across a 12 mm thick
specimen is less than 1 K at a given mean temperature.

The procedure used for measuring o consists of first cooling the specimen to approxi-
mately liquid nitrogen temperature. Sufficient time is allowed for the two thermocouple
readings to agree to within 1 K. The furnace is then heated very slowly until a fringe
minimum is observed on a strip chart recorder monitoring the Fizeau intensity. The tempera-
ture is then recorded. Subsequently, the furnace is heated rapidly and after a convenient
number of fringes has been observed, power to the furnace is cut back to allow the thermo-
couple readings to equilibrate while the temperature is slowly rising. At a fringe minimum,
the temperature is recorded. The heating process is repeated until the maximum desired
temperature is achieved.

The linear thermal expansion coefficient is defined by

1 dt
O = ——— =
t ar (4)
o
where t is the room temperature specimen thickness and t is the specimen thickness at
temperature T. 1In terms of a fringe count Ni at a temperature Ti we calculate o (T) by the
formula

N.-N.
i i

A -1
a(T) = 3¢ T o7, (5)
o "i "i-1
where T = (Ti+Ti_l)/2. A graph is then made of o as a function of T. On this graph we

also plot either the accepted handbook values of a{T) when they are available, or else values
from the literature. A curve is then visually drawn through the data and from this curve,

we abstract a set of data points. These points are then fitted by computer to a polynominal.
The purpose of the fit is to obtain an analytical expression for o(T), which is needed for
computing dn/dT as a function of temperature.

In Table 3, we present values of o from -180 °C to 200 °C at 20 ° temperature intervals
for A1203 (only perpendicular to c-axis, a|), BaF , CaF_, CdF_, KBr, KCl, LiF, MgF. {(both
all and al), NaCl, NaF, SrF2, CVD ZnS, and--CVD ane. In the cases of NaCl and NaF there is

disagreement between published values [13] and our values (see figures 4 and 5); we list only
our values. We have confidence in our values because our results are in excellent agreement
with the bulk of the measurements reported in the literature. We did not measure the linear
thermal expansion coefficient of Al O3; hence, the numbers shown were computed from values

in the American Institute of Physic§ Handbook [13].

Figures 4 and 5 show the discrepancies betweeen our values (triangles and dashed lines)
and values in the literature (circles and solid lines) for NaCl and NaF, respectively. 1In
Figures 6 and 7, we show curves of o as a function of temperature for CAF_ and MgF_, respec-
tively. The triangles and solid curves are our data. In the case of CAdF_, there has been
virtually no earlier published data. In the case of MgF_, we find excellént agreement with
recently obtained low temperature data [11] but agreemen% with others [10,14] is poor above
room temperature.
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2.4 The Thermo-optic Constant

The thermo-optic constant, dn/dT, is measured by an interferometric technique at dis-
crete laser wavelengths over the temperature range -180 °C to 200 °C. With this technique,
we observe as a function of temperature the shift of Fizeau interference fringes formed from
reflections off the surfaces of an optical specimen polished plane parallel. The same appa-
ratus and experimental technique used for measuring o is used for measuring dn/dT. The
change of index from room temperature to temperature Ti is given by

M, A
i At At -1
T = — = o= et
An ( i) o™ n,3 (1 + T ) (6)

o o o
where M. is the fringe count from room temperature to temperature T., ng is the room tempera-
ture refractive index, and At/to is computed at temperature T. from the linear thermal expan-
sion data. We obtain dn/dT (stfictly speaking An/AT) from

n(T) _ An(Ti) - An(Ti_l) o

T P
d Tl Tl—l

where T = (Ti+Ti_l)/2.

Table 4 presents thermo-optic constants of the following materials over the temperature
range -180 °C to 200 °C tabulated at 20 °C increments:

A1203 - Table 4a MgF2 - Table 4h

BaF2 - Table 4b NaCl - Table 4i

CaF2 - Table 4c NaF - Table 4j

CdF2 - Table 4d SrF2 - Table 4k

KBr - Table 4e ZnS (CVD) - Table 42
KC1 - Table 4f ZnSe (CVD) - Table 4m
LiF - Table 4g

An intercomparison of some of these data with data in the literature has been made and
reasonably good agreement was found [15].

In Table 5 we present refractive index and thickness data used for calculating dn/dT of
the above-mentioned materials.

2.5 Piezo-optic Constants

The piezo-optic constants are the components of a fourth rank tensor that describe the
effect of stress on the refractive index of a material [16]. The relationship is expressed
by

N A< i3 = 9550 ke (8)
where « is the reciprocal of the optical dielectric tensor, 0 is the stress tensor,
qijk% are the components of the piezo-optic tensor, and the indices, i, j, k, and & take
values 1, 2, and 3. Repeated indices indicate summation. Because both the stress and
dielectric tensors are symmetric under interchange of indices, a contracted notation (also
called the Voigt notation) has been adopted so that equation (8) becomes

-1 _
Ak )m = 4 % (9)

where m and n take on values 1-6 corresponding to ij + m, k& > n with 11 > 1, 22 ~» 2, 33 * 3,
23 and 32 > 4, 13 and 31 >~ 5, and 12 and 21 > 6. Nye [16] discusses in detail the relation-
ship between components in the full notation and in the contracted notation.
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The elasto-optic constants relate the change of refractive index to strain in a material.
These coefficients are related to the pPlezo-optic constants by
pij = qimcmj (10)
where pi. is a component of the elasto-optic tensor and C;4 1s a component of the elastic
stiffnesg tensor, both expressed in contracted notation. %n this presentation, only the
measurement of piezo-optic constants is discussed; however, by use of equation (10), it is
a simple matter to convert to the elasto-optic constants.

In a crystalline material with the least symmetry there exist 36 independent piezo-optic
coefficients. However, the materials that have been of interest to the NBS program have been
of cubic or isotropic symmetry; hence, the discussion is limited to these materials. Most
cubic materials possess three independent piezo-optic constants, Aype qyy0 Ay’ isotropic

materials have two independent constants, qll and q12’ where q44 Thus, we can

T 93179,
measure all these coefficients by measuring changes of n when stresses are applied along
certain symmetry directions. If we apply a uniaxial compressive stress, P, along the [100] ..
axis of a cubic material (any axis of an isotropic material), the change of n will depend on
the state of polarization of the radiation and is given by

An = g—-q P (11)
where g = g for radiation polarized parallel to the stress axis and g=aq 5 for radiation
polarized pérpendicular to the stress axis. This convention will be used tﬁroughout the

following discussion.

The stress-induced birefringence (piezo-birefringence) for P along [100] is given by

Anl,—AiL = %i (qll—qlz) P (12)
and for P along [111] is given by
n3
An!l—Anl-= 7 Yy P. (13)
Here l' and i_refer, respectively, to polarization parallel and perpendicular to the stress

axis. Equations [11-13] provide more than enough conditions for obtaining all the piezo-
optic coefficients.

A variety of techniques have been employed for measuring the photoelastic constants of
optical materials including acousto-optic scattering and Brillouin scattering. Many of these
techniques have been reviewed recently ([17]. 1In this article, we discuss the techniques used
in the NBS measurements brogram. The techniques involve interferometric and polarimetric
measurements on specimens under static uniaxial and hydrostatic stress. These measurements
can provide data for obtaining not only the piezo-optic constants, but also elastic compliances.

Fizeau Interferometer: A specimen in the form of a right rectangular prism with dimensions
approximately 12 x 12 x 36 mm is stressed parallel to the long dimension in a calibrated
stressing frame [18] (see Figure 8). Two opposite rectangular faces of the prism are
polished flat and parallel so that Fizeau interference fringes are observed when laser
radiation is reflected from them. These fringes are observed to shift as a function of
applied stress. If the stress is applied along the [100] crystallographic axis, the fringe
shift per unit applied stress is

N2t

2P - % 5" d-ns ). (14)

12

where s is a component of the elastic compliance tensor and q is defined above. If the
specimei”is subjected to a hydrostatic compression, the fringe shift per unit applied
pressure is

3
AN _ 2t |n” _
2P T a [2 (q;;+2q),) “(sll+zslzﬂ' (15)
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Stressing apparatus. A = adjustment screw with domed tip,
B = adjusting member threaded into push rod, C = lever arm,
D = coil spring, E = axis, F = frame, G = spacer, H = ball
bushing, I - stressing screw with domed tip, J = push rod,
K = specimen cup, L = steel ball, M = load cell, N = specimen.
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The extra terms containing the elastic compliances on the right of equations (14) and (15)
occur because the fringe shift is due to the change of optic path in the specimen, which
depends both on the change of n and the change of specimen thickness.

Twyman-Green Interferometer: A specimen mounted in a calibrated stressing frame is placed
in one arm of a Twyman-Green interferometer. When a stress is applied to the specimen the
fringes at the output of interferometer are observed to shift., If the stress is applied
along the [100] crystallographic axis, the fringe shift per unit applied stress is

P x L2 9C ‘“‘“Slz} (16)

If all the measurements described by equations [14-16) are made, we can obtain not only qll

and q12’ but also sll and Sl2'

AN _ 2t [n3

Modified Twyman-Green Interferometer. For many cases, especially in the infrared, it is
difficult to obtain a shift of even one fringe by the above two methods. We then require

a modified interferometric technique which is capable of measuring fractions of a fringe
shift [19,20]. Figure 9 shows an interferometer that is capable of measuring 0.0l fringe
shift at 10.6 um. The two arms of the interferometer are in close proximity in order to
minimize instabilities due to air currents and vibrations. The effects of vibrations are
also minimized by mounting the diagonal mirror onto the same base as the beamsplitter and by
mounting the two end mirrors on a common base. The end mirror in the specimen arm of the
interferometer undergoes a sinusoidal translation along the optic axis, thus, modulating the
output intensity of the interferometer. The reference specimen at 10.6 um is a crystal of
Ge in a compression appratus that we have calibrated by measuring the force necessary to
produce an integral number fringe shift. Fractional fringes are then obtained by linear
interpolation. In operation, the reference specimen is stressed until the interferometer

is at a null, which occurs when the fundamental harmonic of the output intensity is zero.

A given stress applied to the unknown specimen will shift the interferometer away from null,
whereupon we compensate for this shift by applying an incremental stress to the Ge that brings
the interferometer back to null. From these data we can calculate q and g with eqg. (16)
provided s is known. The state of the polarization is determined é% the p%farizer. The
variable wave plate is used to balance the intensities of the two arms of the interferometer
for a given state of polarization. It consists of a specimen of Ge placed in a stressing
apparatus with the angle of stress at 45° with respect to the vertical in a plane perpendi-
cular to the beam axis.

Modified Dyson Interferometer. We have constructed a polarizing interferometer for measuring
photoelastic constants. This instrument is capable of measuring fringe shifts to a precision
of A/500 at 632.8 nm [21]. It is based on a design by Dyson [22] that was further modified
by Green [23]. A schematic diagram of the experimental apparatus is shown in Figure 10.

This instrument operates on two beam interference, however, the two beams are orthogonally
polarized. Thus, an optic path change in one arm of the interferometer results in a change
of state of polarization of the combined beam at the output of the interferometer. Hence,
fringe shifts are analyzed with ellipsometric techniques which have great inherent precision.

This interferometer has several other advantages over conventional Twyman-Green
interferometers: it is more stable with respect to motion of system elements because both
beams traverse the same optics, hence, the optic path changes in both arms tend to be equal.
In addition, the close proximity of the arms minimizes the effects of thermal currents, which
are further reduced by placement of a cover over the interferometer part of the apparatus.

In this interferometer, the expression for the piezo-optic constant in terms of the
fringe shift per unit applied stress is
2 A AN
q = n3 [t E + (n—l)Slz] (17)

Stress-Induced Birefringence (Piezo-Birefringence): The coefficients that determine stress-
induced birefringence in most cubic materials are qll—ql2 and q44. It is most convenient to

measure these coefficients on two separate samples, one oriented for stress along [100] and
the other oriented for stress along [111], because in these orientations the crystal becomes
optically uniaxial and not biaxial; hence, small angular misorientations lead to only small
measurement errors. 18




OSCILLOSCOPE

LOCK-IN AMPLIFIER

A.C.AMPLIFIER

=
SIGNAL REFERENCE
PYROELECTRIC [
DETECTOR BEAM SPECIMEN
MIRROR SPLITTER
MIRROR
FOCUSING
MIRROR| [T~
[/ -
MIRROR
POLARIZER REFERENCE MIRROR ON
SPECIMEN PZT DRIVE
VARIABLE
WAVE PLATE
LASER
RADIATION

Figure 9. Modified Twyman-Green interferometer for measuring piezo-
optic constants at 10.6 um.

19




SILICON MATRIX VIDICON

SPATIAL FILTER AND
BEAM EXPANDER

LASER 0

SPECIMEN |:

GUARTER WAVE PLATE

MIRROR

Figure 10. Modified Dyson interferometer for measuring piezo-optic
constants in the visible.

20




A variety of techniques have been used to measure piezo-birefringence [17]. In the
simplest technique, the specimen is placed between two crossed polarizers with the stress
axis at 45° with respect to the direction of polarization and perpendicular to the radiation
beam. As stress is applied, the output intensity will undergo a series of nulls corresponding
to a series of fringe shifts and the fringe shift per unit applied stress is

AN tn3
- & (18)

where q' for stress along [100] and q' = q44 for stress along [111]. 1In the case

= 95790
of noncubic materials, the expression for the fringe shift becomes much more complicated.

Frequently, it is either impossible or inconvenient to apply sufficient stress to obtain
the shift of even one fringe. In this case, a compensator is placed within the experimental
apparatus. Compensators used are Soleil compensators, de Senarmont compensators, or compen-
sators consisting of a stressed specimen which acts like a Soleil compensator. Photometric
techniques are also employed [24]. Recently, Birnbaum et al. [25] have developed an inter-
esting new technique for measuring piezo-birefringence in which a stressed specimen is
placed in a scanning Fabry-Perot cavity.

A simple variation of the basic crossed polarizer technique, is to double pass the
radiation through the specimen [20]. This technique which has the advantage of requiring
only one polarizer, has double the sensitivity of the single pass method. Figure 11 shows
a double pass arrangement for measuring piezo-birefringence at 10.6 um.

In Tables 6 through 11, we present photoelastic constant data for CaF2, SrF2, BaF2,

glass, a chalcogenide glass (Ge 33%, As 12%, Se 55%), Ge, KC1l, KC1:KI, fused SiO

ASZS X

3
and CVD ZnSe. The ZnSe is a polycrystalline material and, hence, is considered to be
isotropic. In Table 12, we present elastic constant data for BaF2, CaF2, Ge, KC1, fused
SiO2, SrFZ, and ZnSe (CVD).
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2.9 Tables

Table la. Constants of Dispersion Equation for KCl near 20 °C.

Specimen Commercial
Temperature 19.9 °C
Al 0.74783561
A2 0.42626630
A3 4.6867104
Xl (um) 0.083633417
Ay (um) 0.15389978
A3 (um) 95.063422
No. of Wavelengths 79

Wavelength Range (um) 0.22-14.4

Average Absolute

Residual of n (10'5)

2.3

RAP?

20.2 °C

0.80902239
0.36511458
2.2323342

0.08828162
0.15737774

65.870423
58
0.25-15.5

KCl:KIb

19.9 °cC

0.78085271
0.39493953
2.2662238

0.08611153
0.15600595

66.360157
54
0.25-15.5

aReactive atmosphere processed.

bKCl nominally doped with 1.5% KI.

Table 1b. Constants of Dispersion Equation for CaF_ near 20 °C.
Specimen Hot Forged Fusion Cast
Temperature 20.8 °cC °C
Al 0.98594551 0.34393190
A2 0.05290246 0.6948269
A3 4.2816899 3.8902192
Al (pm) 0.07218116. 0.0127821
Az (um) 0.14114719 0.0936663
A3 (pm) ) 36.465937 34.8259
No. of Wavelengths 69 60
Wavelength Range 0.25-8.03 0.21-8.7
Average Absolute -5
Residual of n (10 7) 1.9 2.1
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Table lc. Constants of Dispersion Equation for Fusion Cast SrF2near 20 °C.

Specimen o Fusion Cast
Temperature 20 °C

A, 0.67805894
A2 0.37140533
A3 3.3485284
Al (um) 0.05628989
Az (um) 0.10801027
A3 {(pm) 39.906666
No. of Wavelengths 53
Wavelength Range (um) 0.21-11.5

Average Absolute _
Residual of n (10 ) 2.1

Table 1d. Constants of Dispersion Equation for Chemical Vapor
Deposited (CVD) ZnS near 20 °cC. ‘

Specimen
Temperature

(um)

1
2
3
1
5 (um)

(um)

NO. of Wavelengths
Wavelength Range (um)
Average Absolute

Residual of n (10- )

> > > p Py P
w

#1

21.6 °C
0.33904026
3.7606868
2.7312353
0.31423026
0.17594174

33.886560
25
0.55-10.6

5.4

#2

21.9 °cC
0.24199447
3.8575584
2.5433609
0.33005445
0.17899635

32.849275
30
0.55-10.6

4.6
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Table le. Constants of Dispersion Equation for Chemical Vapor

Deposited (CVD) ZnSe near 20 °C.

Specimen #1
Temperature 20.3 °C
Al 4.2980149
A2 0.62776557
A3 2.8955633
Al (um) 0.19206300
Az (um) 0.37878260
A3 (pm) 46.994595
No. of Wavelengths 33
Wavelength Range (um) 0.54-18.2
Average Absolute -5

Residual of n (10 7) 6.2

#2

20.8 °C
4.4639521
0.46132463
2.8828867
0.20107634
0.39210520
47.047590

38
0.54-18.2
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Table 4a. dn/dT of Al,0, (10 K )
° Wavelength (um)
Temperature (°C) 5 4575
dne/dT dno/dT
-180 0.19 0.18
=160 0.36 0.32
-140 0.51 0.45
~-120 0.65 0.58
=100 0.78 0.69
-80 0.89 0.79
-60 0.99 0.88
-40 1.07 0.96
-20 1.15 1.04
0 1.22 1.11
20 1.28 1.17
40 1.33 1.23
60 1.38 1.28
80 1.42 1.32
100 1.47 1.37
120 1.51 1.41
140 1.55 1.44
160 1.59 1.48
180 l.64 1.51
200 1.69 1.54
¢ 0.04 0.03

®Standard deviation from a third degree polynomial fit.
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Table 4b. dn/dT of BaF2 (10 K ™)
Wavelength (um)
Temperature (°C)

0.4579 0.6328 1.15 3.39 10.6
-180 -0.78 -0.86 -0.81 -0.81 -0.73
~160 -0.92 -0.98 -0.96 -0.95 -0.85
-140 -1.04 -1.09 -1.08 -1.07 -0.96
=120 -1.15 ~1.19 -1.19 -1.17 -1.05
-100 -1.24 -1.27 -1.29 -1.26 -1.13
- 80 -1.32 -1.35 -1.37 ~1.34 -1.21
- 60 -1.38 -1.41 -1.44 -1.41 -1.27
- 40 -1.44 -1.47 -1.50 -1.47 -1.32
- 20 -1.49 -1.52 -1.55 -1.51 ~-1.37
0 =1.53 -1.56 -1.59 -1.56 -1.41
20 -1.56 -1.60 ~-1.62 -1.59 -1.45
40 =-1.60 -1.63 -1.66 -1.62 -1.48
60 -1.63 -1.66 -1.69 -1.66 -1.51
80 -1.65 -1.70 -1.71 -1.68 -1.54
100 -l.68 -1.73 -1.74 -1.71 -1.57
120 -1.71 -1.76 -1.77 -1.75 =-1.60
140 -1.75 -1.79 -1.80 -1.78 -1.63
160 =-1.78 -1.83 -1.84 -1.82 -1.66
180 -1.83 -1.87 -1.88 -1.87 -1.70
200 -1.88 -1.92 -1.93 -1.92 -1.75
o 0.03 0.02 0.03 0.03 0.03

3standard deviation from a third degree polynomial fit.
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Table 4c. dn/dT of CaF2 (10 K ™)
Wavelength (um)
Temperature (°C)

0.4579 0.6328 1.15 3.39
-180 -0.39 -0.40 -0.41 -0.40
-160 -0.53 ~-0.54 -0.56 ~0.52
-140 -0.64 ~0.66 -0.68 -0.63
-120 -0.74 -0.77 -0.78 -0.73
~100 -0.83 -0.85 -0.87 -0.82
- 80 -0.90 -0.93 ~0.95 -0.89
- 60 -0.95 -0.99 -1.01 -0.95
- 40 -1.00 -1.03 -1.06 -1.00
- 20 -1.04 -1.07 -1.10 -1.05
0 -1.07 ~1.10 -1.13 -1.09
20 -1.10 -1.13 -1.15 -1.12
40 -1.12 -1.15 -1.18 -1.14
60 -1.14 -1.17 -1.20 -1.17
80 -1.16 -1.19 -1.22 -1.19
100 ~1.18 -1.21 -1.24 -1.21
120 -1.20 -1.23 -1.26 -1.23
140 -1.22 =1.26 -1.29 -1.25
160 -1.26 -1.30 -1.32 -1.27
180 -1.29 ~1.34 ~1.36 -1.30
200 -1.34 ~1.40 -1.41 -1.34
o 0.01 0.02 0.02 0.03

aStandard deviation

from a third degree polynomial fit.
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Table 4d. dn/dT of CdF, (10’5 kL
Wavelength (um)
Temperature (°C)

0.4579 0.6328 1.15 3.39
-180 -0.43 -0.56 -0.57 -0.53
-160 -0.52 -0.64 ~0.67 -0.64
-140 -0.59 -0.72 -0.76 -0.73
-120 -0.65 -0.75 -0.83 -0.81
-100 -0.71 -0.84 -0.90 —0.87
- 80 -0.75 -0.89 -0.96 -0.93
- 60 -0.80 -0.93 -1.00 -0.98
- 40 -0.83 -0.97 -1.05 -1.02
- 20 -0.86 -1.01 -1.08 -1.05
0 -0.89 -1.04 -1.12 -1.08
20 -0.92 -1.07 -1.15 -1.11
40 -0.94 -1.10 -1.17 -1.14
60 -0.97 -1.13 -1.20 -1.17
80 -1.00 -1.16 -1.23 -1.20
100 -1.02 -1.19 ~1.27 -1.23
120 -1.06 -1.23 -1.30 -1.27
140 -1.09 -1.27 -1.34 -1.31
160 -1.14 -1.31 -1.39 -1.36
180 -1.18 -1.37 -1.44 -1.42
200 -1.24 -1.43 -1.51" -1.49
o2 0.02 0.02 0.02 0.04

aStandard deviation from a third degree polynomial fit.
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Table

de .,

dn/dT of KBr (10

5

-1

K

)

Temperature (°C)

Wavelength (um)

0.4579 0.6328 1.15 3.39 10.6

-180 —2.85 —2.95 ~3.05 =3.05 -3.06
-160 -3.30 -3.17 -3.26 -3.26 -3.24
-140 -3.19 -3.36 -3.44 -3.44 -3.40
-120 -3.33 -3.53 -3.59 -3.60 -3.54
~100 -3.46 23.67 =3.73 ~3.74 -3.66
- 80 -3.56 -3.78 -3.84 -3.85 -3.77
- 60 -3.66 -3.88 -3.94 -3.95 ~3.86
- 40 -3.74 -3.96 -4.02 -4.03 -3.93
- 20 -3.81 ~4.02 =4.09 Z4.10 -4.00
0 -3.88 -4.08 -4.14 -4.16 -4.06

20 -3.93 -4.12 -4.19 -4.21 -4.11
40 -3.98 -4.16 -4.23 -4.25 -4.16
60 =2.03 -4.19 =4.27 ~4.29 ~2.20
80 -4.07 -4.23 -4.31 -4.33 -4.25
100 -4.11 ~4.27 -4.35 -4.36 -4.29
120 -4.16 -4.31 -4.39 -4.40 -4.33
140 ~2.20 -4.36 -4.44 ~4.44 ~4.38
160 -4.25 ~4.42 -4.49 -4.49 -4.43
180 -4.31 -4.49 -4.56 -4.55 -4.49
200 -4.38 -4.58 -4.63 -4.62 -4.56
o2 0.04 0.03 0.03 0.06

0.03

aStandard deviation from a third degree polynomial fit.
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Table 4f. dn/d4T of

Temperature (°C)

Wavelength (um)

0.4579 0.6328 1.15 3.39 10.6
~180 -2.26 ~2.32 ~2.35 ~2.39 =2.33
-160 -2.44 -2.52 -2.55 -2.58 -2.50
-140 -2.61 -2.70 -2.74 -2.75 -2.65
-120 -2.76 -2.86 -2.90 -2.91 -2.80
-100 -2.90 ~3.00 ~3.05 -3.05 ~2.93
- 80 -3.02 -3.13 -3.17 -3.17 -3.04
- 60 -3.14 -3.24 -3.29 -3.28 -3.15
- 40 -3.24 -3.35 -3.39 -3.38 -3.24
— 20 -3.33 =3.43 -3.48 ~3.47 ~3.33

0 -3.41 -3.51 -3.55 -3.55 -3.41
20 -3.49 -3.58 -3.62 -3.62 -3.48
40 -3.55 -3.65 -3.68 -3.69 -3.54
60 —3.61 -3.70 ~3.74 -3.75 -3.60
80 -3.67 -3.76 -3.79 -3.80 -3.65

100 -3.72 -3.81 -3.84 -3.85 -3.70
120 -3.77 -3.86 -3.89 -3.90 -3.74
140 -3.82 —3.91 ~3.94 -3.94 -3.79
160 -3.87 -3.96 -4.00 -3.99 -3.83
180 -3.91 -4.02 -4.05 -4.04 -3.87
200 -3.96 -4.08 -4.11 -4.09 -3.91
o 0.02 0.02 0.02 0.02 0.04

aStandard deviation

from a third degree polynomial fit.
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Table 4g. dn/dT of LiF (10 ° XK 1)

Wavelength (um)

Temperature (°C)

0.4579 0.6328 1.15 3.39
-180 -0.33 -0.36 Z0.38 20.40
-160 -0.61 -0.63 -0.64 -0.60
-140 -0.85 -0.86 -0.86 -0.78
-120 -1.04 -1.05 -1.05 -0.93
~100 ~1.20 -1.21 -1.21 -1.06
- 80 -1.32 -1.34 -1.34 - -1.16
- 60 -1.42 -1.44 -1.45 -1.25
- 40 -1.49 -1.52 -1.53 -1.32
= 20 ~1.54 -1.59 Z1.60 -1.37
0 -1.58 -1.63 -1.65 -1.42
20 -1.60 -1.67 -1.69 -1.45
40 -1.63 -1.70 -1.73 -1.48
60 ~1.65 ~1.72 -1.75 -1.51
80 -1.67 -1.75 -1.77 -1.53
100 -1.71 -1.78 -1.79 -1.56
120 -1.75 -1.81 -1.81 -1.59
140 -1.82 -1.85 -1.84 -1.63
160 -1.90 -1.91 -1.88 -1.67
180 -2.02 ~1.99 -1.92 -1.73
200 -2.16 -2.09 -1.99 -1.80
o2 0.03 0.02 0.04 0.04
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Table 4i. dn/dT of NaCl (10 > x )
Wavelength (um)
Temperature

(°C) 0.4579 0.6328 1.15 3.39
-180 -2.06 -2.16 -2.22 -2.24
-160 -2.30 -2.40 -2.48 -2.49
-140 -2.51 -2.61 -2.70 -2.70
-120 -2.69 -2.79 -2.89 -2.89
-100 -2.85 -2.96 -3.06 -3.05
- 80 -2.99 -3.09 -3.20 -3.19
- 60 -3.11 -3.21 -3.32 -3.31
- 40 -3.30 -3.32 -3.42 -3.41
- 20 -3.29 -3.40 -3.51 -3.49
0 -3.36 -3.48 -3.58 -3.57
20 -3.42 -3.54 -3.64 -3.63
40 -3.48 -3.60 -3.70 -3.68
60 -3.53 -3.65 -3.74 ~-3.73
80 -3.57 -3.69 -3.79 -3.78
100 -3.62 -3.74 -3.83 -3.83
120 -3.67 -3.78 -3.88 -3.88
140 -3.72 -3.83 -3.93 -3.94
160 -3.78 -3.88 -3.99 -4.01
180 -3.84 -3.94 -4.06 -4.09
200 -3.92 -4.01 -4.14 -4.18
o2 0.05 0.04 0.04 0.04

8Standard deviation from a third degree polynomial fit.




-1

)

Wavelength (um)

Temperature (°C)

Table 43. dn/dT of NaF (10™° K
0.4579 0.6328 1.15 3.39
-180 -0.41 -0.42 ~0.45 -0.45
-160 -0.55 -0.59 -0.63 -0.61
-140 -0.68 -0.74 -0.78 -0.75
-120 -0.79 -0.86 -0.91 -0.86
~100 -0.88 ~0.96 -1.02 ~0.96
- 80 -0.96 -1.05 -1.10 -1.04
- 60 -1.02 -1.12 -1.17 -1.11
- 40 -1.08 -1.17 -1.23 -1.16
~ 20 -1.12 -1.22 -1.27 -1.20
0 -1.16 -1.25 -1.30 -1.23
20 -1.19 -1.28 -1.32 -1.25
40 -1.22 -1.30 -1.34 -1.27
60 -1.24 -1.32 -1.36 21.29
80 -1.27 -1.33 -1.37 -1.31
100 -1.29 -1.35 -1.39 -1.32
120 -1.31 -1.37 -1.41 -1.34
140 ~1.34 —1.40 -1.44 -1.37
160 -1.38 -1.43 -1.48 -1.40
180 -1.42 -1.47 -1.53 -1.44
200 -1.47 -1.52 -1.59 -1.49
o2 0.02 0.05 0.05 0.05
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Table 4k. dn/dT of SrF_ (10 K ™)

Wavelength (um)

Temperature (°C)

0.4579 0.6328 1.15 3.39 10.6

_180 ~0.54 ~0.56 20.55 -0.56 —0.35
-160 ~0.67 ~0.69 ~0.69 -0.68 -0.49
~140 -0.77 -0.81 -0.81 -0.80 -0.61
~120 -0.86 ~0.90 -0.91 -0.89 -0.71
=100 20.94 —0.98 ~1.00 20.97 20.79
- 80 -1.01 -1.05 -1.07 -1.04 -0.85
- 60 - -1.06 -1.11 -1.13  -1.10 -0.90
- 40 -1.11 -1.15 -1.17.  -1.15 -0.93
=20 1.15 -1.19 1.21 -1.19 ~0.96
0 -1.18 -1.22 ~1.24 ~1.22 -0.97

20 ~1.20 ~1.24 ~1.26 -1.24 -0.98
40 ~1.22 -1.25 -1.28 -1.26 -0.99
60 ~1.24 -1.27 21.29 T1.27 -0.99
80 -1.25 ~1.28 ~1.30 -1.28 ~1.00
100 ~1.26 -1.29 -1.31 -1.29 -1.01
120 -1.27 -1.30 -1.32 -1.29 -1.02
140 -1.29 ~1.32 ~1.33 ~1.30 -1.05
160 ~1.30 -1.34 -1.35 -1.31 -1.08
180 -1.32 -1.36 -1.37 -1.32 -1.13
200 ~1.34 -1.39 -1.40 -1.33 -1.20
o2 0.03 0.02 0.01 0.03 0.05

aStandard deviatioh from a third degree polynomial fit.
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Table 4%. dn/dT of CVD 2nS (10‘5 k1)

Wavelength (um)

Temperature (°C)
10.6

—
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8Standard deviation from a third degree polynomial fit.
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Table 4m. dn/dT of CVD ZnSe (10'5 K’l)

Wavelength (um)

Temperature (°C)

0.6328 1.15 3.39 10.6

~180 7.6 5.4 5.0 2.9
~160 8.2 5.7 5.2 5.1
-140 8.7 6.0 5.4 5.4
~120 9.1 6.3 5.6 5.5
~100 9.4 6.5 5.8 5.7
- 80 9.7 6.6 5.9 5.8
- 60 10.0 6.7 6.0 5.9
- 40 10.2 6.8 6.1 6.0
= 20 10.3 6.9 6.1 6.0
0 10.5 7.0 6.2 6.1

20 10.6 7.0 6.2 6.1
40 10.7 7.0 6.2 6.1
60 10.8 7.1 6.3 6.1
80 10.9 7.1 6.3 6.2
100 11.0 7.2 6.3 6.2
120 11.1 7.2 6.4 6.3
140 11.3 7.3 6.4 6.3
160 11.5 7.4 6.5 6.4
180 11.8 7.6 6.6 6.6
200 12.1 7.8 6.7 6.7
o 0.1 0.1 0.1 0.1

83tandard deviation from a third degree polynomial fit.
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Table 7a. Piezo-optic Constants of Alkaline-Earth Fluorides*(lo—lzPa—l)

A = 0.6378 um A =1.15 uym A = 3.39 um
F
Ca 5
qll -0.38 +0.03 -0.40 *0.06 -0.52 +0.11
q 5 1.08 £0.03 1.09 +£0.06 1.00 +0.11
- - + - + - +
(qll qlz) 1.46 +0.01 1.49 +0.02 1.51 +£0.03
q44 0.71 £0.01 0.72 +*0.01 0.87 *0.06
SrF
qll -0.64 +0.04 -0.63 +0.05 : 0.83 +0.09
q12 1.45 +£0.04 1.50 £0.06 1.23 +*0.07
- - 4 - + — +
(qll ql2) 2.08 %0.01 2.13 f0.04 2.05 *0.06
q44 0.60 x0.01 0.62 +0.02 0.72 +*0.04
F
Ba2
q;4 -0.99 +0.03 -0.91 +*0.07 -0.75 *0.07
q;, 2.07 $£0.04 2.13 +0.07 2.11 £0.05
- - + - + - +
(qll qlz) 3.06 +0.01 3.03 +£0.02 2.91 £0.08
q44 0.95 *0.01 0.95 #0.01 0.99 *0.07

*This work was supported in part by the Air Force Office of Scientific
Research under grant No. AFOSR-78-0026.
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Table 7b. Comparison of Piezo-optic Data in the Visible Region for

Alkaline-Earth Fluorides (10—12 Pa—l).
NBS Literature
CaF2
a;, -0.38 ~0.20%, —0.41°
a, 1.08 1.16%, 1.04°
b
(4,79, ) -1.46 ~1.45%, -1.45°, -1.48%,
-1.44%, —1.47%
a, 0.71 0.70%, 0.89°, 0.81%
SrF2
C
a, -0.64 -0.58c
a, 1.45 1.77c
(qll-ql2) -2.08 -2-3SC
d, 0.60 0.59
BaF,
q -0.99 ~0.62°
11 b
a 2.07 2.31
12 b
(qll—qlz) -3.06 —2.93b
A, 0.95 1.06

4, Pockels, Lehrbuch der Kirstalloptik (B. G. Teubner, Leipzig und
Berlin, 1906). (A=0.5893 um).

bK. V. Rao, T. S. Narasimhamurty, J. Phys. Chem. Solids 31, 876 (1970).

(A=0.5893 um) .

“o. V. Shakin, M. F. Bryzhina, V. V. Lemanov, Sov. Phys. Solid State
13, 3141 (1972). (A=0.6328 um).

dK. S. Iyengar, K. B. Bansigar, Current Science 27, 436 (1958).
(A=0.5890 um).

°A. J. Michael, J. Opt. Soc. Am. 58, 889 (1968). (A=0.5461 um).

fV. G. Krishna Murty, Ph.D. Thesis (Osmania University, Hyderabad,
India, 1964). (A=0.5461 um).

58




Table 8. Photoelastic Constantsa of Ge.

A = 3.39 um A = 10.6 um
94 (10" %pa ™) -0.79 -0.84
5, (10" 1%pa7t) -0.51 -0.48
Ay (10" %pa™) -1.07 -1.09
P11 ~0.151, -0.158° -0.154
Py, ~0.128, -0.132° -0.126
Py ~0.072, -0.074° -0.073
n 4.037° 4.006°

aEstimated accuracy approximately 2%. To calculate the elasto-optic
constants we used the elastic constants of H. J. McSkimin, J. Appl.
Phys. 24, 988 (1953).

bD. K. Biegelsen and J. C. Zesch, Phys. Rev. B 14, 3578 (1976).

cH. W. Icenogle, B. C. Platt, and W. L. Wolfe, Appl. Optics 15, 2348
(1977).
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Table 9a. Piezo-optic Constants of XCl (10 a-).

A (um) 91 9, SV 9179, Ref.
0.589 ~4.22 1.67 a
0.589 -4.42 1.66 b
0.589 ~4.94 1.47 c
0.480 - 1.42 d
0.589 -4.74 1.57 e
0.633 - 1.81 £
0.633 4.6 *0.2 2.7 +0.8 -3.9 $0.8 1.7 0.4
0.644 — - -4.4 +0.2 1.9 +0.4

*0.633 4.6 *0.2 2.8 £0.2 -4.6 0.2 1.9 +£0.2

*0.644 - =4.7 0.2 1.9 #0.1

10.6 : _— - 2.0 g

10.6 -2.62 ' R

10.6 4.3 +#0.3 2.8 £0.3 ~3.4 0.4 1.8 0.4

*10.6 4.2 £0.2 2.6 *0.2 -3.6 0.3 1.8 0.2

*Nomially doped with 1.5% KI.
ap, Pockels, Lehrbuch der Kristalloptik (Teubner, Leipzig, 1906), p. 408.

thagavantam and Y. Krishna Murty, Proc. Indian Acad. Sci. A46, 399
(1957).

°k. G. Bansigir and K. S. Iyengar, Proc. Phys. Soc. London 71B, 225
(1958).

dR. Srinivasan, Zeit, f£. Physik 155, 281 (1959).

eK. V. Krishna Rao and V. G. Krishna Murty, Proc. Indian Acad. Sci. 64,
24 (1966).

fW. W. Wilkening, J. D. Friedman and C. A. Pitha in Third Conference on

High-Power Infrared lLaser Windows, 1973, AFCRL-TR-47-0085-I. ?

gC. S. Chen, J. P. SZcznesniak, and J. C. Corelli, J. Appl. Phys. 46,
('1975).

C. A. Pitha and J. D. Friedman, in Proceedings of the Fourth Annual
Conference on Infrared Window Materials, 1974, compiled by C. R. Andrews
and C. L. Strecker.

h

60




Table 9b. Elasto-Optic Constants of

KC1l

A (um) P11 P12 Pag P15/Pyy Ref.
.589 -0.0276 a
.589 0.215 0.159  -0.024 -0.74 b
.589 0.246 0.192  -0.0298 -0.78 c
.633 0.21 0.15 -0.026 -0.70
.644 ~0.029

* 633 0.21 0.15 -0.031 -0.72

* 644 -0.031

. 10.6  0.20 0.15 -0.023 -0.76

*10.6  0.19 0.14 ~0.024 -0.71

*Nominally doped with 1.5% KI.
"

F. Pockels, Lehrbuch der Kristallopt

ik (Teubner, Leipzig, 1906), p. 480.

| by. s. Iyengar, Nature 176, 1119 (195
C

24 (1966).
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Table 10. Photoelastic Constantsa of Fused SiO

2
A = 0.6328 um 1.15 ym 3.39 um

-12_ -1
qll(lo Pa ) 0.42 +0.01 0.58 #0.01 0.81 +0.01

-12_ -1
q12(lo Pa ) 2.70 %£0.01 2.80 +0.03 2.78 +0.02
P 0.120 0.001 0.136 +0.002 0.154 +0.001
pl2 0.269 x0.001 0.281 +0.003 0.283 +0.001
n 1.457 1.449 1.409

& he errors are based on the standard deviation of the data and do not
take into account any errors in the elastic constants.

Table 11. Photoelastic Properties of CVD ZnSe

A = 0.6328 um A= 10.6 um
qll(lO_lzPa_l) -1.44 +0.04, -1.48 #0.05% -1.46 +0.07
qlz(lo'lzpa‘l) 0.17 40.05, 0.22 *0.05° 0.51 +0.07
q..-9 (lO—lzPa_l) -1.60 #0.01 -1.97 #0.02

117712 - =
Py -0.13 -0.10
P1, -0.04 0.007
a

L. F. Goldstein, J. S. Thompson, J. B. Schroeder and J. E. Slattery,
Appl. Optics 14, 2432 (1975).
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Table 12. Elastic Compliances Used in Computation of Piezo-Optic and

Elasto-Optic Constants (10_12Pa_l).

' = —-—
®11 S12 S44 S1p = 1/3(sy 428, ,-1/2 5, )
BaF2a 15.126 -4.708 38.941 -4.587
CaF2a 6.867 -1.451  29.764 -3.639
b

Ge 9.75 -2.66 14.9 -—
kc1® 25.8 -3.73 158.0 -
Fused Siozd 13.16 -2.16 - —
Sera 9.877 -2.553 31.969 -3.738

-2.61° ‘ -3.66°

znSe (CVD) 13.9 #0.6° -4.4 +0.2% -- -

%prom tabulation by S. K. Dickinson, "Infrared Laser Window Materials
Property Data for ZnSe, KCl1l, NacCl, Can, Ser, Ban", Report No. AFCRL-

TR-75-0318, PSRP # 635, Air Force Cambridge Research Laboratories,
L. G. Hansom Field, Bedford, MA 01730 (1975).

bH. J. McSkimin, J. Appl. Phys. 24, 988 (1953).

®s. Haussiil, Zeits. fur Physik 159, 223 (1960).
dW. Primak and D. Post, J. Appl. Phys. 30, 779 (1959).

eObtained in this laboratory and used for calculating the piezo-optic
constants.
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